Sequence (put there some numbers as 1, 2, 3, 5, 8, 13... or a sequence named EJS_SS_TR with P=+ N=-, example EJS_N3.14159P1N2.718_P1P0.577N1) :


Work memorization field (not used for the request) :


Number :  Digits after the comma :   


Choose Database and/or Calculs:
  

Some examples

Fibonacci numbers Fn
EJS_P1P1_P1P1
Linear   Recurrence   Equation:
a(0)=1   a(1)=1  
a(n)=1.a(n-2)   +   1.a(n-1)  

1,   1,   2,   3,   5,   8,   13,   21,   34,   55,   89,   144,   233,   377,   610,   987,   1597,   2584,   4181,   6765,   10946,   17711,   28657,   46368,   75025,   121393,   196418,   317811,   514229,   832040,   1346269
\(EJSGF(x) = hidden\)
Lucas numbers Ln
EJS_P1P3_P1P1
Linear   Recurrence   Equation:
a(0)=1   a(1)=3  
a(n)=1.a(n-2)   +   1.a(n-1)  

1,   3,   4,   7,   11,   18,   29,   47,   76,   123,   199,   322,   521,   843,   1364,   2207,   3571,   5778,   9349,   15127,   24476,   39603,   64079,   103682,   167761,   271443,   439204,   710647,   1149851,   1860498,   3010349
\(EJSGF(x) = hidden\)
Pell numbers Pn
EJS_P0P1_P1P2
Linear   Recurrence   Equation:
a(0)=0   a(1)=1  
a(n)=1.a(n-2)   +   2.a(n-1)  

0,   1,   2,   5,   12,   29,   70,   169,   408,   985,   2378,   5741,   13860,   33461,   80782,   195025,   470832,   1136689,   2744210,   6625109,   15994428,   38613965,   93222358,   225058681,   543339720,   1311738121,   3166815962,   7645370045,   18457556052,   44560482149,   107578520350
\(EJSGF(x) = hidden\)
Pell-Lucas numbers Qn
EJS_P2P2_P1P2
Linear   Recurrence   Equation:
a(0)=2   a(1)=2  
a(n)=1.a(n-2)   +   2.a(n-1)  

2,   2,   6,   14,   34,   82,   198,   478,   1154,   2786,   6726,   16238,   39202,   94642,   228486,   551614,   1331714,   3215042,   7761798,   18738638,   45239074,   109216786,   263672646,   636562078,   1536796802,   3710155682,   8957108166,   21624372014,   52205852194,   126036076402,   304278004998
\(EJSGF(x) = hidden\)
Padovan numbers Pn
EJS_P1P1P1_P1P1P0
Linear   Recurrence   Equation:
a(0)=1   a(1)=1   a(2)=1  
a(n)=1.a(n-3)   +   1.a(n-2)   +   0.a(n-1)  

1,   1,   1,   2,   2,   3,   4,   5,   7,   9,   12,   16,   21,   28,   37,   49,   65,   86,   114,   151,   200,   265,   351,   465,   616,   816,   1081,   1432,   1897,   2513,   3329
\(EJSGF(x) = hidden\)
Perrin Fn numbers
EJS_P3P0P2_P1P1P0
Linear   Recurrence   Equation:
a(0)=3   a(1)=0   a(2)=2  
a(n)=1.a(n-3)   +   1.a(n-2)   +   0.a(n-1)  

3,   0,   2,   3,   2,   5,   5,   7,   10,   12,   17,   22,   29,   39,   51,   68,   90,   119,   158,   209,   277,   367,   486,   644,   853,   1130,   1497,   1983,   2627,   3480,   4610
\(EJSGF(x) = hidden\)

Sequence with real numbers Pi, e, γ
EJS_P3.14159P0.5772156000000001P2.7182818_P3.14159P0.5772156000000001P2.7182818
Linear   Recurrence   Equation:
a(0)=3.14159   a(1)=0.5772156000000001   a(2)=2.7182818  
a(n)=3.14159.a(n-3)   +   0.5772156000000001.a(n-2)   +   2.7182818.a(n-1)  

3.14159,   0.5772156000000001,   2.7182818,   17.5918215211946001,   51.2019376868716762,   157.8752960734686318,   513.9703917419812401,   1649.0999407770219462,   5275.3695348382877314,   16906.5114495936476811,   54182.4838491411179463,   173615.0100531509316920,   556322.8242636984231880,   1782674.6497530686334581,   5712357.4479790846951659,   18304523.1249765925782012,   58654546.7529704566505316,   187951128.2591425416397494,   602265757.4372319678060892,   1929884908.0072846938274474,   6184073597.0971022409026911,   19816086464.8631892638318495,   63498158064.6031151337622361,   203471865410.9060442108528429,   652000015041.8197004613376011,   2089252087758.3566303185621993,   6694745683304.1649942302617756,   21452470971196.1986070940750348,   68741746518847.5507582098522938,   220274285456729.7845468019580597,   705841257905358.0336271588926889
\(EJSGF(x) = hidden\)
A299277 - OEIS
EJS_P2P2P4P10P16P28P48P76P110P144P182_P1N3P4N4P4N4P4N4P4N4P3
Linear   Recurrence   Equation:
a(0)=2   a(1)=2   a(2)=4   a(3)=10   a(4)=16   a(5)=28   a(6)=48   a(7)=76   a(8)=110   a(9)=144   a(10)=182  
a(n)=1.a(n-11)   -3.a(n-10)   +   4.a(n-9)   -4.a(n-8)   +   4.a(n-7)   -4.a(n-6)   +   4.a(n-5)   -4.a(n-4)   +   4.a(n-3)   -4.a(n-2)   +   3.a(n-1)  

2,   2,   4,   10,   16,   28,   48,   76,   110,   144,   182,   222,   264,   310,   356,   408,   468,   536,   610,   684,   762,   842,   924,   1010,   1096,   1188,   1288,   1396,   1510,   1624,   1742
\(EJSGF(x) = hidden\)
Copyrightdepot.com (8695)
Contains infinite sequences.

Licence Creative Commons
Ces documents sont mis à disposition selon les termes de la Licence Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)